## LARGE ROUGHNESS ELEMENT EFFECTS ON SAND TRANSPORT, OCEANO DUNES, CALIFORNIA

J.A. Gillies<sup>1</sup>, N. Lancaster<sup>2</sup>, E. Furtak-Cole<sup>1</sup>

<sup>1</sup>Division of Atmospheric Sciences <sup>2</sup>Division of Earth and Ecosystems Sciences Desert Research Institute, Reno NV USA

#### BACKGROUND

- Roughness elements are known to modulate sand transport by wind
- Very sparse roughness can increase erosion
- At a critical roughness density (λ=(n b h)/S) of 0.012 roughness begins to suppress sand transport due to shear stress partitioning effects
- o As  $\lambda$  increases, sand transport decreases



#### BACKGROUND

• When the roughness elements are tall, transport efficiency is reduced to a much greater extent



#### PURPOSE

 Present data from a study of sand transport by wind across a coastal sand sheet area that was modified by roughness



Bale dimensions: 1.17 m long × 0.4 m high × 0.6 m wide

Area= 5000 m<sup>2</sup>

Roughness configuration to achieve target 50% reduction:

$$NSF = 0.0004 \ \lambda^{-1.871}$$

(Gillies et al., 2006)

NSF=0.5, requires  $\lambda$  = 0.022 (%cover = 3)

Number bales = 210

Centre – Centre Distance = 4.9 m

Row to Row Distance = 4.9 m

Sand trap and bale rows



A - Anemometer mast

## RESULTS

#### • Wind Speed



# Results

#### Sand Flux

|        | Event Period |       |          |                              | NSF Near Downwind Edge |      |
|--------|--------------|-------|----------|------------------------------|------------------------|------|
| Date   | Start        | End   | Duration | Avg. WS (m s <sup>-1</sup> ) | CSC                    | BSNE |
| 15-Apr | 12:35        | 18:00 | 5:25     | 6.90                         | 0.19                   | 0.16 |
| 16-Apr | 9:55         | 17:25 | 7:30     | 6.91                         | 0.25                   | 0.24 |
| 17-Apr | 8:35         | 17:50 | 9:15     | 7.42                         | 0.54                   | 0.80 |
| 18-Apr | 11:45        | 16:20 | 4:35     | 5.88                         | 0.55                   | 0.43 |
| 21-Apr | 13:00        | 18:30 | 5:30     | 7.26                         | 0.47                   | 0.36 |
| 22-Apr | 12:10        | 16:30 | 4:20     | 6.25                         | 0.41                   | 0.35 |
| 24-Apr | 12:55        | 18:25 | 5:30     | 6.86                         | N/A                    | 0.94 |
| 25-Apr | 9:50         | 18:30 | 8:40     | 7.20                         | 0.36                   | 0.31 |
| 26-Apr | 10:05        | 18:40 | 8:35     | 8.27                         | 0.60                   | 0.56 |
| 27-Apr | 9:00         | 18:45 | 9:45     | 7.58                         | 0.51                   | 0.51 |
| 28-Apr | 9:15         | 18:35 | 9:20     | 7.97                         | 0.57                   | 0.56 |
| 29-Apr | 8:10         | 17:00 | 8:50     | 8.25                         | 0.45                   | 0.39 |
| 30-Apr | 10:15        | 16:55 | 6:40     | 5.63                         | 0.53                   | 0.00 |
| 1-May  | 13:20        | 16:25 | 3:05     | 6.43                         | 0.52                   | N/A  |
| 2-May  | 9:55         | 16:55 | 7:00     | 7.50                         | 0.22                   | 0.07 |

# RESULTS Sand Flux Change with Downwind Distance



#### **MEAN SALTATION REDUCTION WITH DOWNWIND DISTANCE**



#### The sand flux decreases with downwind distance







For the same  $\lambda_{\text{\textit{r}}}$  sand transport can be decreased to a greater degree if the roughness is tall





## CONCLUSIONS

- $\bullet$  Sand transport scales with  $\lambda$
- Element height has a demonstrable effect on sand transport efficiency and it is suggested here that the relationship is a power function between h=0.1 and h=1 m
- The height effect results from the increasing interaction of the element with the full range of saltation path lengths, with the vertical scale being more important than the horizontal scale
- Theory suggests that associated dust flux will decrease as the cube of the change in sand flux (will vary by individual site)

#### CONCLUSIONS

- The presented relationships offer a means to design better control measures for suppressing sand transport and associated dust emissions
- These relationships can be used to set design criteria based on available resources and available resources